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Stochastic unraveling of time-local quantum master equations beyond the Lindblad class
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A method for stochastic unraveling of general time-local quantum master equations~QME! which involve
the reduced density operator at timet only is proposed. The present kind of jump algorithm enables a numeri-
cally efficient treatment of QMEs that are not of Lindblad form. So it opens large fields of application for
stochastic methods. The unraveling can be achieved by allowing for trajectories with negative weight. We
present results for the quantum Brownian motion and the Redfield QMEs as test examples. The algorithm can
also unravel non-Markovian QMEs when they are in a time-local form like in the time-convolutionless for-
malism.
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Quantum master equations~QMEs! are frequently used to
describe time-independent as well as time-dependent
nomena in chemical physics, quantum optics, solid s
physics, biological physics, etc.~see Ref.@1# for a number of
typical examples!. These QMEs describe the time evolutio
of density matrices, which are used in order to represent
mixed nature of the states. Stochastic unraveling is an
cient numerical tool for solving such equations. This meth
allows one to simulate much larger and more complex s
tems with many degrees of freedom. It can, for example
used to accurately describe femtochemical experiment
the liquid phase whose description has been limited u
now, to models with one or two effective interaction coord
nates. In the unraveling scheme one considers an ense
of stochastic Schro¨dinger equations~SSEs! which in the
limit of a large ensemble resembles the respective QME.
numerical effort scales much more favorably with the size
the basis since one is now dealing with wave functions
not with density matrices anymore~for a comparison of di-
rect integrators, see Ref.@2#!. Another aspect of the stocha
tic methods is the possible physical interpretation of exp
ments detecting macroscopic fluctuations~e.g., photon
counting! in various quantum systems@3#. Most of the un-
raveling schemes@3–8# have been restricted to QMEs o
Lindblad form @9# that ensures that the reduced density m
trix ~RDM! stays positive semidefinite for all times and a
parameters. Nevertheless there are many physical mea
ful QMEs that result in positive-definite or almost positiv
definite RDMs although they are not of Lindblad form. Th
increasing interest in descriptions beyond the Lindblad c
such as the quantum Brownian motion@10,11#, the Redfield
formalism @12#, non-Markovian schemes@13–15#, etc., re-
sulted in various efforts to develop stochastic wave-funct
algorithms.

Strunzet al. @10,11# developed the non-Markovian quan
tum diffusion model. In general, this method can also
applied to QMEs in Markov approximation even though th
might not preserve positivity~see also Ref.@16#!. A similar
approach was also proposed by Gaspard and Nagaoka@17#.
Very recently Stockburger and Grabert@18# developed a
method on how to exactly represent the RDM of a syst
coupled to a linear heat bath in terms of SSEs. The nume
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e-
te

e
fi-
d
s-
e
in
il

ble

e
f
d

i-

-

ng-

s

n

e

al

properties of this approach need to be explored. Breueret al.
@15# extended a scheme that they had used to calculate
multitime correlation functions@19# to the unraveling of
QMEs. Their technique is based on doubling the Hilb
space. Instead of a single stochastic wave function one h
pair of them@15#. This scheme conserves Hermiticity of th
RDM only on an average and not for every single realizati
Thus, the deviation from Hermiticity is a quantity with sta
tistical error and one has to perform a huge number of re
izations in order to achieve a good convergence. Since
bility and efficiency are crucial issues for unravelin
algorithms we propose in this paper an alternative appro
that fulfills these criteria.

The aim is to represent, in terms of quantum trajector
the solutionr(t) of a generalized time-local Hermiticity
conserving QME

dr~ t !

dt
5A~ t !r~ t !1r~ t !A†~ t !1 (

k51

M

$Ck~ t !r~ t !Ek
†~ t !

1Ek~ t !r~ t !Ck
†~ t !% ~1!

with the total numberM of dissipative channels and arbitrar
operatorsA(t), Ck(t), andEk(t). Examples for these opera
tores are given below. Here we restrict the operators in s
a way that the norm of the solution stays conserved.
readability we shall omit the time arguments in the follow
ing.

In order to approach the problem let us define a st
vector (uc&,uf&)T spanning a doubled Hilbert space as pr
posed in Ref.@15#. Unlike Ref.@15# the RDM shall be repro-
duced by an ensemble average~denoted by overbars! of
outer products of the vectorsuc& and uf&

r5uc&^fu1uf&^cu. ~2!

A particular realization of the stochastic process will be d
noted by the pair (uc&,uf&). The averaging is performed
over all trajectories possibly including a weighted sum ov
pure initial states. A vantage of this averaging is the cons
vation of Hermiticity for every single trajectory in contrast
©2002 The American Physical Society01-1
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Ref. @15#. We note that this small modification improves th
numerical efficiency significantly.

For the SSEs let us consider 2M independent possibly
complex noise variablesjk

i (t). The superscripts denot
which of the two terms from the Hermitian pair in the sum
Eq. ~1! is taken and subscripts denote the various dissipa
channels. All stochastic differentialsdjk

i (t) are assumed to
have zero mean, to be normalized and uncorrelated@20#

djk
i 50, djk

i* dj l
j5d i j dkldt. ~3!

Next, as an ansatz we construct a SSE that propagate
pair (uc&,uf&)

duc&5D1uc&dt1 (
k51

M

(
i 51

2

S1k
i uc&djk

i , ~4a!

duf&5D2uf&dt1 (
k51

M

(
i 51

2

S2k
i uf&djk

i . ~4b!

The operatorsD1 and D2 govern the deterministic and th
operatorsSjk

i govern the stochastic part of the evolution.
general, they may depend on the state vector and expli
on time. After differentiating Eq.~2!, neglecting all terms
higher than first order indt, and assuming that ensemb
averages always factorize@21# one obtains

dr5@D1uc&^fu1D2uf&^cu#dt1 (
k51

M

@S1k
1 uc&^fuS2k

1†

1S2k
2 uf&^cuS1k

2†#dt1H.c. ~5!

Comparing with Eq.~1! one notes thatS1k
1 has to equalS2k

2

and S2k
1 has to equalS1k

2 . Moreover, one can see thatS2k
1

5Ck1ak
1 andS2k

2 5Ek1ak
2 with ak

1 andak
2 being arbitrary

scalar functions of (uc&,uf&)T and possibly of time. Making
the latter substitutions in Eq.~5! yields the constraint

D15D25A2 (
k51

M

~ak
2* Ck1ak

1* Ek1ak
1ak

2* !. ~6!

Any quantum jump method is specified by jump ratespk
i

which have to be real scalar functions of (uc&,uf&). If nk
i (t)

is the number of jumps in channelk and due to termi up to
time t, the probability fornk

i (t) to increase by one, i.e., th
expectation value of bothdnk

i and (dnk
i )2, is equal topk

i dt
during the infinitesimal time intervaldt. Thus, the noise
variablesjk

i obeying Eq.~3! are related todnk
i (t) as @21#

djk
i 5

dnk
i 2pk

i dt

Apk
i

eiw. ~7!

The phase factoreiw does not change the RDM expressio
within each realization and can be set to one. Substitu

Eq. ~7! into Eq. ~4! one finds thatak
i 52Apk

i . So the SSEs
for our quantum jump method read
03770
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duc&5S A1 (
k51

M pk
11pk

2

2 D uc&dt1 (
k51

M F S Ek

Apk
1

21D dnk
1

1S Ck

Apk
2

21D dnk
2G uc&, ~8a!

duf&5S A1 (
k51

M pk
11pk

2

2 D uf&dt1 (
k51

M F S Ck

Apk
1

21D dnk
1

1S Ek

Apk
2

21D dnk
2G uf&. ~8b!

The jump ratespk
1 andpk

2 still remain as free parameters
In the statistical limit their values have no influence on a
averaged physical quantity. Nevertheless, it turns out
they can strongly influence the convergence behavior of
jump algorithm, i.e., they determine the statistical error
the observables calculated. A detailed discussion of this
fluence and utilization of such free parameters can be fo
in Ref. @22#.

To ensure an efficient scheme with fast convergence
has to require that the norm of every single trajectory
constant in time. Asking for̂fuf&, ^cuc&, etc., being con-
stant in time does not create a stable scheme but the co
tion of norm preservation ofuc&^fu1uf&^cu

TrH d

dt
@ uc&^fu1uf&^cu#J 50 ~9!

does. Unfortunately, applying this condition does not lead
to positive values of the jump ratespk

i for all trajectories at
all times. However, since thepk

i are arbitrary real functions
they can be replaced by their absolute values. The pric
pay is that we have to introduce an additional weight fac
for the trajectories, which jumps between one and minus o
In addition, there is a small deviation of the norm from un
because in the regions where thepk

i are replaced by their
absolute values norm conservation is no longer guarant
But in all our tests this deviation was far below 1% a
neither affected numerical stability nor efficiency. The neg
tive weights are actually needed to reconstruct RDMs wh
are, in general, not positive semidefinite. If the RDM sta
positive semidefinite during its entire time evolution th
negative weights of some trajectories are not needed, i.e
trajectories can be normalized to unity and represent ph
cally pure states of the open quantum system. In the
amples below the RDM can exhibit negative populatio
This unphysical situation could probably be cured by app
ing an initial slippage to the initial state@23,24#. We note that
these physically unreasonable RDMs occur because of
physical initial states or because the QME is not physica
correct or is applied in a parameter region where it is
valid. Nevertheless an unraveling scheme has to be abl
mimic also this unphysical behavior of the QME because
the ensemble average both should fully coincide.

The condition~9! applied to the QME~1! results in the
additional constraint
1-2
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A1A†52 (
k51

M

~Ek
†Ck1Ck

†Ek! ~10!

and if applied to the deterministic part of the correspond
SSE~8! it yields the total jump rate

p52
^fuA1A†uc&1^cuA1A†uf&

^fuc&1^cuf&
. ~11!

All partial jump rates can be found subsequently making
of Eqs.~10! and ~11!

pk
15

^fuCk
†Ekuc&1^cuEk

†Ckuf&

^fuc&1^cuf&
, ~12a!

pk
25

^fuEk
†Ckuc&1^cuCk

†Ekuf&

^fuc&1^cuf&
. ~12b!

In the rest of this paper let us briefly show how the p
posed method can be applied to two typical physical pr
lems: the quantum Brownian motion and dissipative elect
transfer within Redfield theory. In both cases the systems
described by Markovian QMEs which do not have Lindbl
structure. The model of Brownian motion@1# describes a
particle with massm, coordinateq, momentump, and Hamil-
tonian HS interacting with a thermal bath. In the high
temperature limit of a bath of harmonic oscillators the r
evant QME has the form

dr

dt
52

i

\
@HS,r#2

ig

2\
@q,$p,r%#2

mgkT

\2
†q,@q,r#‡,

~13!

whereg is the damping rate. Comparing with Eq.~1! one
finds the operators of the jump algorithm (M52)

E15A g

2\
q, C152 iA g

2\
p, ~14a!

E25AmgkT

\2
q, C25E2 , ~14b!

A52
i

\
HS1

ig

2\
qp2

mgkT

\2
qq. ~14c!

Modeling the particle as a harmonic oscillator with eigenf
quency v one can compute the population dynamics d
picted in Fig. 1. The initial state of the oscillator is the pu
stater3351. As can be seen, the agreement of the res
using our stochastic method and a direct integration of
QME is already quite good for one thousand samples.

As a next test for the present quantum jump method
shall demonstrate the stochastic unraveling of the Redfi
QME @12,25#

ṙ52
i

\
@HS,r#1

1

\2
$@Lr,K#1@K,rL†#% ~15!
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in which L is the relaxation operator andK the system part
of the system-bath interaction@12#. Let us consider a mode
for electron transfer in which the system includes a sin
reaction coordinate with the Hamiltonian@12,25#

HS5H1u1&^1u1H2u2&^2u1v12~ u1&^2u1u2&^1u!, ~16!

whereH1 andH2 are the Hamiltonians of two coupled ha
monic oscillators with frequencyv. We choose a potentia
configuration in the normal region with no barrier betwe
the two harmonic potentials~change of free energyDE
52v, reorganization energyl53v) with intercenter
coupling v125v. The bath is described by a cutoff fre
quencyvc5v and temperaturekT5v/4. The system-bath
interaction is characterized by the damping rateG
5ph/(M exp(1))5v/10 ~see Ref.@25# for details!. After
rearrangement of Eq.~15! one can easily identify the opera
tors involved in Eq. ~1! (M51): C15K, E15L, A5
2 iH S2KL. A Gaussian wave packet located at the don
stateu1& and having energy slightly above the crossing of t
harmonic potentials was chosen as initial state. The num
cal simulation for about 1000 trajectories provides su
ciently converged and accurate results. Figure 2 shows
relaxation of the ensemble averaged donor populationP1

5^cu1&^1uf&1^fu1&^1uc&. A widely discussed property o
the Redfield equation is that it does not conserve positiv
@12#. Although P1 is always positive the tiny negative frac
tion in Fig. 3 is an evidence for the existence of single re
izations with negativeP1. The simulation of the same sys
tem within the so-called diabatic-damping approximati
@25,26# with a Lindblad QME by means of the standa
quantum jump method@3–7# keeps all values ofP1 well
confined between 0 and 1.

To summarize, a method of stochastic unraveling
QMEs beyond the Lindblad form is proposed and thus la
fields of application for stochastic methods are opened. T
progress became possible with the use of the wave-func
pair in the doubled Hilbert space and the derivation of stab

FIG. 1. Time evolution of the third excited state of the harmon
oscillator in the quantum Brownian oscillator model forg
51023v, kT54.5v. The direct integration of the QME~thick
solid line! is compared to the results of the quantum jump meth
with one trajectory~dot-dashed line!, average of 100~thin solid
line!, and 1000~broken line! trajectories.
1-3
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almost normalized SSEs. The efficiency is determined by
behavior of the norm of every single trajectory. In this sen
the jump rates were used as parameters to influence the
ciency. Negative values for the weight of single trajector
allow for the reconstruction of non positive-semidefin
RDMs if required. The method was successfully tested fo
simple electron transfer model and for Brownian motion a

FIG. 2. Relaxation of the donor population for the electr
transfer model. The solid line shows the exact solution of the QM
the dashed line one arbitrary trajectory, the dotted line an ave
over 500 trajectories.
.

s
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should allow for better quantum dynamical simulation
large systems. It can also unravel non-Markovian QM
when they are in a time-local form like in the time
convolutionless formalism@13# or in methods using auxiliary
density matrices to include the memory effects@14# as well
as post-Markov master equations@23#.

,
ge

FIG. 3. Occurrence of the expectation values of the popula
on the donor state produced by the new unraveling scheme fo
Redfield QME ~dotted line! and the standard normalized jum
method for the Lindblad QME~solid line! at time vt/(2p)53,
both with 5000 trajectories.
mi-
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@11# T. Yu, L. Diósi, N. Gisin, and W.T. Strunz, Phys. Rev. A60, 91
~1999!.
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